

Journal of Chromatography B, 666 (1995) 197-202

JOURNAL OF CHROMATOGRAPHY B: BIOMEDICAL APPLICATIONS

High-performance liquid chromatography-thermospray mass spectrometry of ω -carboxyleukotriene B_4 and ω -hydroxyleukotriene B_4 from an incubation mixture of human colonic well-differentiated adenocarcinoma homogenate

Mototeru Yamane^{a,*}, Shinsuke Shimizu^b, Akihisa Abe^a, Hirokazu Sugiura^b, Masaaki Miyaoka^b, Toshihiko Saitoh^b

^aDepartment of Biochemistry, Tokyo Medical College, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo, Japan ^bFourth Department of Internal Medicine, Tokyo Medical College, 6-7-1, Nishi-Shinjuku, Shinjuku-ku, Tokyo, Japan

First received 11 October 1994; revised manuscript received 6 December 1994; accepted 19 December 1994

Abstract

A method for the analysis of ω -carboxyleukotriene B_4 and ω -hydroxyleukotriene B_4 in human colonic carcinoma homogenate is described. The hydroxy groups of the leukotriene metabolite were acetylated by acetic anhydride, and the mixture was partially purified on a Sep-Pak C_{18} cartridge and analysed by reversed-phase HPLC-thermospray MS. Generally, the base ion, $[MH-2(60)]^+$, is produced through elimination of two acetic acid (60 mass units) molecules from the protonated molecular ion. On selected-ion monitoring, standard curves for ω -carboxy- or ω -hydroxyleukotriene B_4 showed a linear relationship over the range 72–1500 pmol. The assay based on selected-ion monitoring was applied to an extract from human colonic carcinoma homogenate. When a homogenate of human colonic well-differentiated adenocarcinoma was incubated with NADPH and leukotriene B_4 (60.6 nmol) as a substrate, the conversion of precursor leukotriene B_4 to ω -carboxyleukotriene B_4 was 0.33 or 3.17%, respectively. Based on these results, it is suggested that carcinoma cells themselves or leukocytes at the hostsite in a region of human colonic well-differentiated adenocarcinoma are performing ω -oxidation through NADPH-dependent ω -hydroxylation of leukotriene B_4 .

1. Introduction

The inflammatory mediator leukotriene B_4 (LTB₄) is a metabolite of arachidonic acid produced by the activation of the 5-lipoxygenase enzyme. LTB₄ is a potent stimulus for chemotaxis and chemokinesis in human polymorphonuclear leukocytes (PMNL), mononuclear cells and

others [1–3]. This compound is inactivated by the cytochrome P-450 system through ω -hydroxylation in rat hepatocyte [4–6], human neutrophils [7–9] and guinea pig eosinophils [10], or by the 12-hydroxydehydrogenase system in the kidney [11] or PMNL [12] of porcine.

Although LTB₄, ω -hydroxy-LTB₄ (ω -OH-LTB₄), (ω -1)-OH-LTB₄ and ω -carboxy-LTB₄ (ω -COOH-LTB₄) can be detected by reversed-phase (RP) HPLC with UV detection, there is

^{*} Corresponding author.

overlap of (ω -1)-OH-LTB₄ and ω -COOH-LTB₄ on the chromatogram [10]. The RP-HPLC-thermospray MS (RP-HPLC-TSP-MS) technique is able to separate each underivatized component and thus overlap is prevented. However, this procedure suffers from low sensitivity for di- or tri-hydroxy polyunsaturated fatty acids such as ω -COOH-LTB₄ and ω -OH-LTB₄, due to the appearance of numerous fragment ions following elimination of hydroxy groups [14].

The authors recently developed a method for the simultaneous detection of polyhydroxy polyunsaturated fatty acids such as LTB₄, lipoxine A₄ (or B₄), prostaglandins and thromboxanes by RP-HPLC-TSP-MS [13-15]. In this method, hydroxy groups were acetylated with acetic anhydride, partially purified on a Sep-Pak C₁₀ cartridge and analysed by RP-HPLC-TSP-MS. Generally, the base ion, $[MH - n(60)]^+$, is produced through elimination of acetic acid (n =number of hydroxyl groups). In this study, the hydroxyl groups of ω -COOH-LTB₄ or ω -OH-LTB₄ were acetylated, the products were partially purified and analysed by RP-HPLC-TSP-MS. This procedure was applied to ω -COOH-LTB. and ω-OH-LTB₄ from the homogenate of human colonic well-differentiated adenocarcinoma.

2. Experimental¹

2.1. Standards and reagents

LTB₄, ω -OH-LTB₄ and ω -COOH-LTB₄ were obtained from Cascade Biochem (Reading, UK). Prostaglandin F₂ α -3,3,4,4-²H₄ (PGF₂ α -d₄) was obtained from Cayman Chemical Co. (Ann Arbor, MI, USA). β -NADPH was obtained from Oriental Yeast Co. (Osaka, Japan).

Other solvents and reagents were of analytical-reagent grade.

2.2. Extraction from the homogenate of human colonic carcinoma

Specimens of human (male) colonic well-differentiated adenocarcinoma (0.55 g wet weight) were collected upon operation. The tissue was homogenized in a Polytron (Kinematica Switzerland) homogenizer in 10 ml of 50 mM Tris-HCl buffer (pH 7.5). The homogenate (4.9 ml), LTB₄ (60.6 nmol, final concentration of 12.1 μM) and β -NADPH (0.1 ml of 50 mg/ml, final concentration of ca. 1 mM) were homogenized in a vortex-mixer to disperse the substrate. A control experiment was carried out without LTB₁. Each mixture was incubated at 37°C for 30 min under aerobic conditions in a shaker operated at 120 rpm. The incubation mixture was mixed with 1.387 nmol PGF₂ α -d₄ as the internal standard (I.S.) and 25 ml of ice-cold methanol. The mixture was centrifuged at 1000 g for 10 min at 4°C. The supernatant was concentrated until water began to distil away under reduced pressure. The concentrate was acidified to ca. pH 3 with 15% formic acid and applied to a Sep-Pak C₁₈ cartridge (Waters Co., Milford, MA, USA) equilibrated with water. The cartridge was washed with 5 ml of water. OH-LTB₄ and COOH-LTB₄ in the cartridge were eluted with 6 ml of acetonitrile, and the eluent was evaporated to dryness under reduced pressure.

2.3. Derivatization and RP-HPLC-TSP-MS

OH-LTB₄ and COOH-LTB₄ were derivatized using acetic anhydride in pyridine to obtain the acetic esters, which were then partially purified on a SeP-Pak C_{18} cartridge and analysed by RP-HPLC-TSP-MS as previously described [13–15] except that the acetylation was achieved under argon gas at 25°C in the dark for 4 h, and 0.1 M ammonium formate-0.1 M formic acidacetonitrile (8:2:15, v/v) was used as a mobile phase for RP-HPLC-TSP-MS.

¹ Abbreviations used: leukotriene B₄ (LTB₄): human polymorphonuclear leukocyte (PMNL): ω-hydroxy-LTB₄ (ω-OH-LTB₄); ω-carboxy-LTB₄ (ω-COOH-LTB₄); reversed-phase (RP); RP-HPLC-thermospray MS (RP-HPLC-TSP-MS); prostaglandin F₂ α-3.3,4,4-²H₄ (PGF₂ α-d₄); internal standard (1.S.); selected-ion monitoring (SIM).

2.4. Standard curve and recovery experiment

For the standard curve, a fixed aliquot (0.555 nmol) of PGF₂ α -d₄ as I.S. was mixed with various, known quantities of ω -COOH-LTB₄ or ω -OH-LTB₄ ranging from 0.072 to 1.50 nmol, acetylated and analysed by RP-HPLC-TSP-MS in the selected-ion monitoring (SIM) mode as described above. The peak area corresponding to ω -COOH-LTB₄ or ω -OH-LTB₄ on each SIM of [MH⁺ - 120]⁺ ion (m/z 331 or 359) was compared with the peak area corresponding to PGF₂ α -d₄ as I.S. on a SIM of the [MH⁺ - 180]⁺ ion (m/z 305).

For the recovery experiment, ω -COOH-LTB₄ (3.00 nmol), ω -OH-LTB₄ (2.89 nmol), PGF₂ α -d₄ (1.11 nmol) as I.S., 5 ml of 50 mM Tris-HCl buffer (pH 7.5) and 25 ml of methanol were mixed. The mixture was concentrated, acidified, and applied to a Sep-Pak C₁₈ cartridge as described above. The eluent was evaporated, and the residue was acetylated and analysed by RP-HPLC-TSP-MS as described above.

3. Results and discussion

The acetyl derivatives of ω -COOH-LTB₄ and ω -OH-LTB₄ standards each showed a characteristic MS pattern (Fig. 1A,B) compared with native ω -COOH-LTB₄ and ω -OH-LTB₄ (Fig. 1C,D). As shown in Fig. 1A,B, the base-ion of the acetyl derivative of ω -COOH-LTB₄ or ω - $OH-LTB_4$ was $[MH-120]^+$, based on the elimination of two acetic acid (60 mass units) molecules from the protonated molecular ion. Since the rate of elimination of an acetyl group introduced at the ω -position is low, the [MH – 120] (m/z 359) is the base-ion of the ω -OH-LTB₁ acetyl derivative. As shown in Fig. 1C,D, the direct analysis of native ω -COOH-LTB₄ and ω -OH-LTB₄ by RP-HPLC-TSP-MS is not satisfactory owing to low sensitivity due to the appearance of many fragment ions following elimination of hydroxyl groups.

The standard curves for the acetyl derivatives of ω -COOH-LTB₄ or ω -OH-LTB₄ are obtained as follows. When the peak area corresponding to

the acetyl derivative of ω -COOH-LTB₄ (m/z331) or ω -OH-LTB₄ (m/z 359) on each SIM chromatogram of [MH - 120]⁺ is compared with the peak area corresponding to the PGF₂ α -d₄ acetyl derivative (as I.S.) on a SIM chromatogram of $[MH - 180]^{+}$ (m/z 305), an approximately linear relationship exists between the peak-area ratios of ω-COOH-LTB₄ or ω-OH-LTB₄ to I.S. and the amount of ω -COOH-LTB₄ or ω -OH-LTB₄. The regression equation for ω -COOH-LTB₄ is described as y = 0.39x (n = 1)where y is the peak-area ratio of acetylated ω -COOH-LTB₄ to I.S. and x is the amount of ω -COOH-LTB₄ (nmol). The regression equation for ω -OH-LTB₄ is described as y = 0.42x (n = 1) where y is the peak-area ratio of acetylated ω -OH-LTB₄ to I.S. and x is the amount of ω-OH-LTB₄ (nmol).

The recovery experiment of ω -COOH-LTB₄ and ω -OH-LTB₄ from the incubation medium gave recoveries of 65.6 and 99.5% of the added amounts, respectively (n=1). It is stipulated that the retention values of ω -COOH-LTB₄ in the first Sep-Pak C₁₈ cartridge procedure decreases compared with ω -OH-LTB₄ or I.S.

SIM chromatograms of the acetyl derivatives obtained from the standards or an extract from an incubation of LTB₄ added to human colonic adenocarcinoma homogenate with β -NADPH are shown in Fig. 2. On the basis of m/z 331, 408 or 413, peak A in Fig. 2 was assigned to ω -COOH-LTB₄ (Fig. 1A). On the basis of m/z359, 436 or 441, peak B in Fig. 2 was assigned to ω -OH-LTB₄ (Fig. 1B). On the basis of m/z 305, peak C in Fig. 2 was assigned to PGF₂ α -d₄ as I.S. as described previously [13,14]. In an extract of an incubation mixture of human colonic welldifferentiated adenocarcinoma homogenate with NADPH and LTB₄, acetyl derivatives of ω -COOH-LTB₄ and ω -OH-LTB₄ (Fig. 2,II) were detected in comparison with the control experiment (Fig. 2,III). The amounts of ω -COOH-LTB₄ or ω -OH-LTB₄ from the incubation experiment were 0.202 and 1.92 nmol, and the conversion % of precursor LTB₄ (60.6 nmol) to ω -COOH-LTB₄ or ω -OH-LTB₄ was 0.33 and 3.17%, respectively. However, since slight amounts of acetyl derivatives of ω -COOH-LTB₄

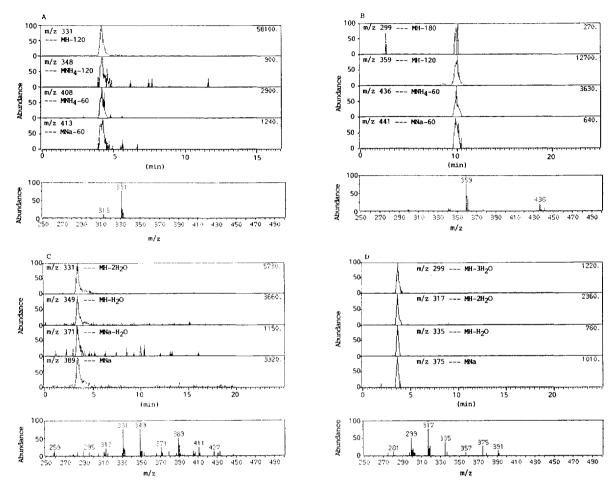


Fig. 1. Mass chromatogram profile on each m/z number and mass spectra obtained from ω -COOH-LTB₄ or ω -OH-LTB₄ acetyl derivatives and underivatized ω -COOH-LTB₄ or ω -OH-LTB₄. HPLC and TSP conditions as described in Experimental. Scan speed, 1.0 scan/s from m/z 250 to 500. Filament off. Spectral patterns corresponding to the main peak on each mass chromatogram are shown below. (A) ω -COOH-LTB₄ acetyl derivative, ca. 3 nmol; (B) ω -OH-LTB₄ acetyl derivative, ca. 1 nmol; (C) ω -COOH-LTB₄, ca. 3 nmol; (D) ω -OH-LTB₄, ca. 3 nmol. The number in the upper right-hand corner of each chromatogram is the ion count.

and ω -OH-LTB₄ (Fig. 2,III) were detected in the control experiment, it is thought that the homogenate contained endogenous LTB₄, ω -COOH-LTB₄ or ω -OH-LTB₄. Based on these results, it is suggested that carcinoma cells themselves or leukocytes at the host site in a region of human colonic well-differentiated adenocarcinoma are performing ω -oxidation through NADPH-dependent ω -hydroxylation of LTB₄.

We recently found a high activity of NADPHdependent ω-hydroxylation of docosahexaenoic acid or arachidonic acid in human colonic welldifferentiated adenocarcinoma homogenate and rat colonic mucosa homogenate (unpublished data). We recently reported on the high activity of NADPH-dependent ω -hydroxylation of (ω -3)-system fatty acids such as docosahexaenoic acid or eicosapentaenoic acid in rat brain or large intestine homogenate [16]. Since the central nervous system and mucosal cells of colonic well-differentiated adenocarcinoma are systems arising from epithelium and epithelial cells, respectively, these ω -oxidation activities may be related to functions characteristic of epithelial cells.

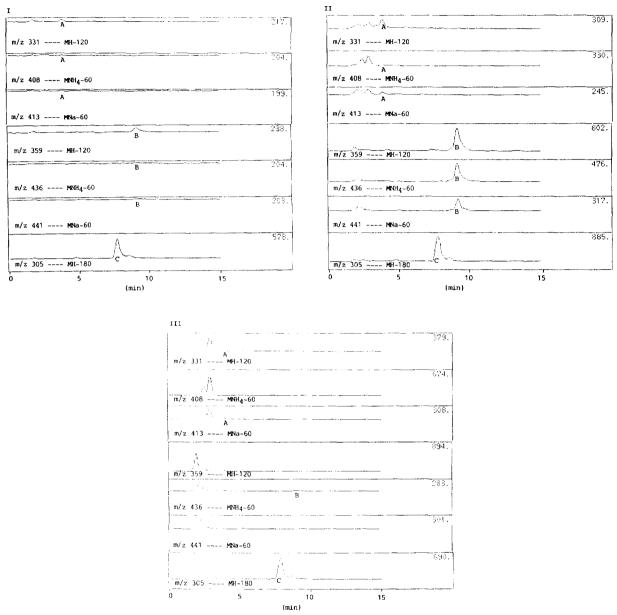


Fig. 2. SIM chromatograms of acetyl derivatives of authentic materials (ω -COOH-LTB₄, ω -OH-LTB₄ and PGF₂ α -d₄), an extract from an incubation mixture of LTB₄ with human colonic adenocarcinoma homogenate and an extract from an incubation mixture of only human colonic adenocarcinoma homogenate as the control experiment. The number in the upper right-hand corner of each chromatogram is the ion count. (I) authentic ω -COOH-LTB₄, ω -OH-LTB₄ and PGF₂ α -d₄; (II) an incubation mixture of LTB₄ with human colonic adenocarcinoma homogenate; (III) an incubation mixture of only human colonic adenocarcinoma homogenate as the control experiment.

The commonly used methods for the analysis of LTB₄ metabolites consist of the separation of each radioactive LTB₄ metabolite from a pre-

cursor radioactive LTB₄ by a RP-HPLC method with radioactive detection, the preparation of the methyl ester (or pentafluorobenzyl ester) and

trimethylsilyl ether derivative of the metabolite and GC-MS analysis [10,17–19]. Although this method is the most reliable method at present, it is a tedious method for the purposes of a simple screening test. Since the hydroxy groups of the LTB₄ metabolites are acetylated and a strong base-ion of each LTB₄ metabolite was thus detected in RP-HPLC-TSP-MS, the present method is well suited for the simultaneous measurement of ω -COOH-LTB₄ and ω -OH-LTB₄ in a simple screening test in vitro.

4. Conclusions

Since the acetyl derivatives of ω -COOH-LTB₄ and ω -OH-LTB₄ were characterized by the high intensity of the [MH – 120]⁺ ion in RP-HPLC–TSP-MS analysis, SIM using these ions could be used to selectively detect ω -COOH-LTB₄ or ω -OH-LTB₄. ω -COOH-LTB₄ and ω -OH-LTB₄ from a precursor LTB₄ were detected in the extract of an incubation mixture of human colonic well-differentiated adenocarcinoma with NADPH. The carcinoma cells themselves or leukocytes at the host-site in a region of human colonic well-differentiated adenocarcinoma thus appear to exhibit ω -oxidation system functions through NADPH-dependent ω -hydroxylation of LTB₄.

References

[1] P. Borgeat and B. Samuelsson, J. Biol. Chem., 254 (1979) 2643.

- [2] P. Needleman, J. Turk, B.A. Jakscik, A.R. Morrison and J.B. Lefkowith, Annu. Rev. Biochem., 55 (1986) 69.
- [3] B. Samuelsson, S.-E. Dahlen, J.A. Lindgen, C.A. Rouzer and C.N. Serhan, Science, 237 (1987) 1171.
- [4] M.C. Romano, R.D. Eckardt, P.E. Bender, T.B. Leonard, K.M. Straub and J.F. Newton, J. Biol. Chem., 262 (1987) 1590.
- [5] H. Sumimoto, E. Kusunose, Y. Gotoh, M. Kusunose and M. Minakami, J. Biochem. (Tokyo), 108 (1990) 215.
- [6] Y. Gotoh, H. Sumimoto, K. Takeshige and S. Minakami, Biochim. Biophys. Acta, 960 (1988) 342.
- [7] G. Hansson, J.A. Lindgren, S.-E. Dahlen, P. Hedqvist and B. Samuelsson, FEBS Lett., 130 (1981) 107.
- [8] W.S. Powell, J. Biol. Chem., 259 (1984) 3082.
- [9] Y. Gotoh, H. Sumimoto and S. Minakami, Eur. J. Biochem., 179 (1989) 315.
- [10] W.R. Mathews, D.M. Guido, B.M. Taylor and F.F. Sun, Prostaglandins, 45 (1993) 347.
- [11] T. Yokomizo, T. Izumi, T. Takahashi, T. Kasama, Y. Kobayashi, F. Sato, Y. Taketani and T. Shimizu, J. Boil. Chem., 268 (1993) 18128.
- [12] S. Wainwright, J.R. Falck, P. Yadagiri and W.S. Powell, Biochemistry, 29 (1990) 1185.
- [13] M. Yamane and A. Abe, J. Chromatogr., 568 (1991) 11.
- [14] M. Yamane and A. Abe, J. Chromatogr., 575 (1992) 7.
- [15] M. Yamane, A. Abe, S. Yamane and F. Ishikawa, J. Chromatogr., 579 (1992) 25.
- [16] M. Yamane, A. Abe and M. Nakajima, J. Chromatogr. B, 662 (1994) 91.
- [17] T.W. Harper, M.J. Garrity and R.C. Murphy, J. Biol. Chem., 261 (1986) 5414.
- [18] G. Jedlitschky, M. Huber, A. Völkl, M. Müller, I. Leier, J. Müller, W.D. Lehmann, H.D. Fahimi and D. Keppler, J. Biol. Chem., 266 (1991) 24763.
- [19] E. Mayatepek, W.D. Lehmann, J. Fauler, D. Tsikas, J.C. Frölich, R.B.H. Schutgens, R.J.A. Wanders and D. Keppler, J. Clin. Invest., 91 (1993) 881.